ADDL RULES FOR $\sqrt{ }$ and FRACTIONAL EXPONENTS

$$
\begin{array}{rlrl}
4^{1 / 2} & =\sqrt{4}=2 & 8^{1 / 3}=\sqrt[3]{8}=2 \\
9^{1 / 2}=\sqrt{9}=3 & 27^{1 / 3}=\sqrt[3]{27}=3 \\
16^{1 / 2}=\sqrt{16}=4 & 64^{1 / 3}=\sqrt[3]{64}=4
\end{array}
$$

multiplication rule
$\sqrt{36}=\sqrt{4 \times 9}=\sqrt{4} \sqrt{9}=2 \times 3=6$

division rule

$\sqrt{\frac{36}{4}}=\frac{\sqrt{36}}{\sqrt{4}}=\frac{6}{2}=3$

ADDITIONAL PROBLEMS

21. $8^{-\frac{2}{3}}$
a) 64
b) 24
c) $1 / 4$
d) 4
e) $1 / 2$
22. Sue can read a book in 6 hours. Jane can read the same book in 4 hours. Jane can read the 5 pages/hour faster than Sue. How many pages/hour can Sue read?
a) 5
b) 10
c) 15
d) 20
e) 25
23. How many gallons of ethanol must be added to 100 gallons of gasoline to make a 90 \% gasohol blend?
a) 5
b) 9
c) 11.111
d) 12.5
e) 15
24. Pump A can drain a swimming pool in 3 hours. Pump B takes 6 hours. How many hours will it take you if both pumps are used at the time?
a) 1
b) 2
c) 3
d) 4
e) 5
25. $\sqrt{18}+\sqrt{200}$
a) $\sqrt{218}$
b) $13 \sqrt{2}$
c) 3
d) 12
e) 225
26. $\sqrt[3]{\frac{64}{27}}$
a) $1 / 2$
b) $3 / 4$
c) $4 / 3$
d) $8 / 9$
e) $9 / 8$

SOLUTIONS FOR ADDL PROBLEMS

21. $8^{-\frac{2}{3}}=\frac{1}{8^{\frac{2}{3}}}=\frac{1}{\left(8^{\frac{1}{3}}\right)^{2}}=\frac{1}{(\sqrt[3]{8})^{2}}=\frac{1}{2^{2}}=\frac{1}{4}$
22. use: distance $=$ (rate)(time)
for Sue : book = $(\mathrm{x})(6$ hours $) \quad$ for Jane : book $=(\mathrm{x}+5)(4$ hours $)$ set : book = book

$$
\begin{aligned}
& 6 x=4(x+5) \\
& 6 x=4 x+20 \\
& 2 x=20 \\
& x=10 \text { pages/hour }
\end{aligned}
$$

23. $\frac{100}{100+x}=90 \%$

$$
\begin{aligned}
& 100=0.9(100+X) \\
& 100=90+0.9 \mathrm{X} \\
& 10=0.9 \mathrm{X} \\
& 10 / 0.9=\mathrm{X} \\
& 11.111 \text { gallons }=\mathrm{X}
\end{aligned}
$$

24. use: distance $=$ (rate)(time)
for A: pool = $\left(r_{A}\right)(3$ hours $) \quad$ for B : pool $=\left(r_{B}\right)(6$ hours $)$
thus :

$$
\mathrm{r}_{\mathrm{A}}=\mathrm{pool} / 3 \quad \mathrm{r}_{B}=\mathrm{pool} / 6
$$

together :

$$
\begin{aligned}
\text { pool }= & \left(\mathrm{r}_{A}+\mathrm{r}_{B}\right)\left(\mathrm{t}_{\text {both }}\right)=(\operatorname{pool} / 3+\operatorname{pool} / 6)\left(\mathrm{t}_{\text {both }}\right) \\
\text { pool }= & \operatorname{pool}\left(\frac{1}{3}+\frac{1}{6}\right)\left(\mathrm{t}_{\text {both }}\right)=\operatorname{pool}\left(\frac{2}{6}+\frac{1}{6}\right)\left(\mathrm{t}_{\text {both }}\right) \\
\text { pool }= & \operatorname{pool}\left(\frac{1}{2}\right)\left(\mathrm{t}_{\text {both }}\right) \\
& 2 \text { hours }=\mathrm{t}_{\text {both }}
\end{aligned}
$$

shortcut : $\frac{1}{t_{A}}+\frac{1}{t_{B}}=\frac{1}{t_{\text {both }}} \quad \frac{1}{3}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}=\frac{1}{t_{\text {both }}}$

$$
\text { thus : } t_{\text {both }}=2 \text { hours }
$$

25. $\sqrt{18}+\sqrt{200}=\sqrt{9 \times 2}+\sqrt{100 x^{2}}=\sqrt{9} \sqrt{2}+\sqrt{100} \sqrt{2}$

$$
\begin{aligned}
& =3 \sqrt{2}+10 \sqrt{2} \\
& =13 \sqrt{2}
\end{aligned}
$$

26

$$
\sqrt[3]{\frac{64}{27}}=\frac{\sqrt[3]{64}}{\sqrt[3]{27}}=\frac{4}{3}
$$

